Reactive oxygen species induce tyrosine phosphorylation of and Src kinase recruitment to NO-sensitive guanylyl cyclase.
نویسندگان
چکیده
Soluble guanylyl cyclase (sGC) is the major cytosolic receptor for nitric oxide (NO) that converts GTP into the second messenger cGMP in a NO-dependent manner. Other factors controlling this key enzyme are intracellular proteins such as Hsp90 and PSD95, which bind to sGC and modulate its activity, stability, and localization. To date little is known about the effects of posttranslational modifications of sGC, although circumstantial evidence suggests that reversible phosphorylation may contribute to sGC regulation. Here we demonstrate that inhibitors of protein-tyrosine phosphatases such as pervanadate and bisperoxo(1,10-phenanthroline)oxovanadate(V) as well as reactive oxygen species such as H2O2 induce specific tyrosine phosphorylation of the beta1 but not of the alpha1 subunit of sGC. Tyrosine phosphorylation of sGCbeta1 is also inducible by pervanadate and H2O2 in intact PC12 cells, rat aortic smooth muscle cells, and in rat aortic tissues, indicating that tyrosine phosphorylation of sGC may also occur in vivo. We have mapped the major tyrosine phosphorylation site to position 192 of beta1, where it forms part of a highly acidic phospho-acceptor site for Src-like kinases. In the phosphorylated state Tyr(P)-192 exposes a docking site for SH2 domains and efficiently recruits Src and Fyn to sGCbeta1, thereby promoting multiple phosphorylation of the enzyme. Our results demonstrate that sGC is subject to tyrosine phosphorylation and interaction with Src-like kinases, revealing an unexpected cross-talk between the NO/cGMP and tyrosine kinase signaling pathways at the level of sGC.
منابع مشابه
Interplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy
Objective(s): The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...
متن کاملeNOS activation induced by a polyphenol-rich grape skin extract in porcine coronary arteries.
BACKGROUND/AIMS Drinking red wine is associated with a decreased mortality from coronary heart diseases. This study examined whether polyphenols contained in a grape skin extract (GSE) triggered the endothelial formation of nitric oxide (NO) and investigated the underlying mechanism. METHODS Vascular reactivity was assessed in organ chambers using porcine coronary artery rings in the presence...
متن کاملFluid shear stress activates proline-rich tyrosine kinase via reactive oxygen species-dependent pathway.
OBJECTIVE Fluid shear stress (flow) modulates endothelial cell (EC) function via specific signal transduction events. Previously, we showed that flow-mediated tyrosine phosphorylation of p130 Crk-associated substrate (Cas) required calcium-dependent c-Src activation. Because flow increases reactive oxygen species (ROS) production in ECs and because H(2)O(2) increases tyrosine phosphorylation of...
متن کاملEpidermal growth factor receptor transactivation by angiotensin II requires reactive oxygen species in vascular smooth muscle cells.
Angiotensin II (Ang II) is a vasoactive hormone with critical roles in vascular smooth muscle cell growth, an important feature of hypertension and atherosclerosis. Many of these effects are dependent on the production of reactive oxygen species (ROS). Ang II induces phosphorylation of the epidermal growth factor (EGF) receptor (EGF-R), which serves as a scaffold for various signaling molecules...
متن کاملSrc drives the Warburg effect and therapy resistance by inactivating pyruvate dehydrogenase through tyrosine-289 phosphorylation
The Warburg effect, which reflects cancer cells' preference for aerobic glycolysis over glucose oxidation, contributes to tumor growth, progression and therapy resistance. The restraint on pyruvate flux into mitochondrial oxidative metabolism in cancer cells is in part attributed to the inhibition of pyruvate dehydrogenase (PDH) complex. Src is a prominent oncogenic non-receptor tyrosine kinase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 280 39 شماره
صفحات -
تاریخ انتشار 2005